ENVIRONMENTAL INFORMATICS

IS MORE THAN DATA MANAGEMENT

Norman Owen-Smith

Centre for African Ecology School of Animal, Plant & Environmental Sciences University of the Witwatersrand

INFORMATICS HIERARCHY

DATA
→ INFORMATION
→ UNDERSTANDING
→ DECISIONS

INFORMATICS HIERARCHY

DATA Storage and dissemination → INFORMATION Statistical assessment → UNDERSTANDING Theoretical modelling → DECISION SUPPORT Alternative scenarios

INFORMATICS IS TRANS-DISCIPLINARY

STATISTICS

- New paradigms for increasingly voluminous data

• MODELLING

- Accommodating spatial & temporal variability

DECISION SUPPORT

- Allowing for uncertainty

SCARCE SKILLS!!

ILLUSTRATED FROM PERSONAL EXPERIENCE

Entering the computer age

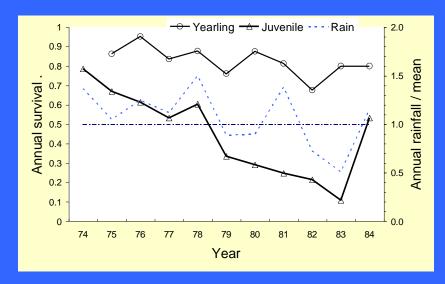
From notebook & pencil through Land Rovers to computerized data collection & modelling

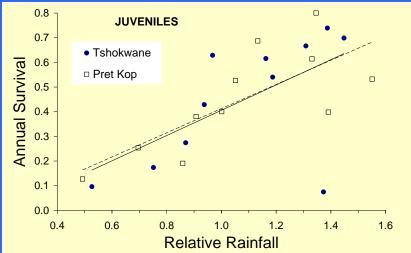
Neither over-abundant nor rare

What limits population expansion?

What restricts population shrinkage?

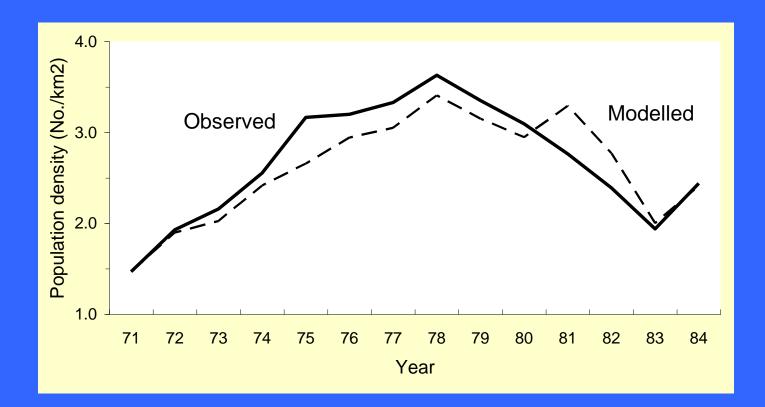
DATA:

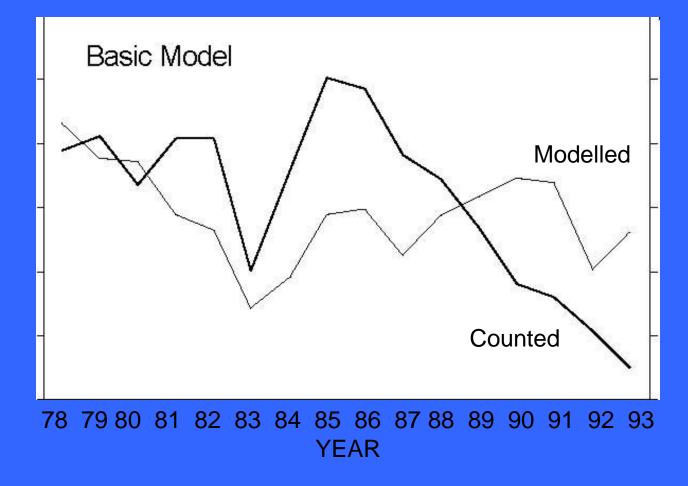

Annual registration of survival and births (recognisable from stripes)



INFORMATION:

Time trends in survival & rainfall


Regression relationships

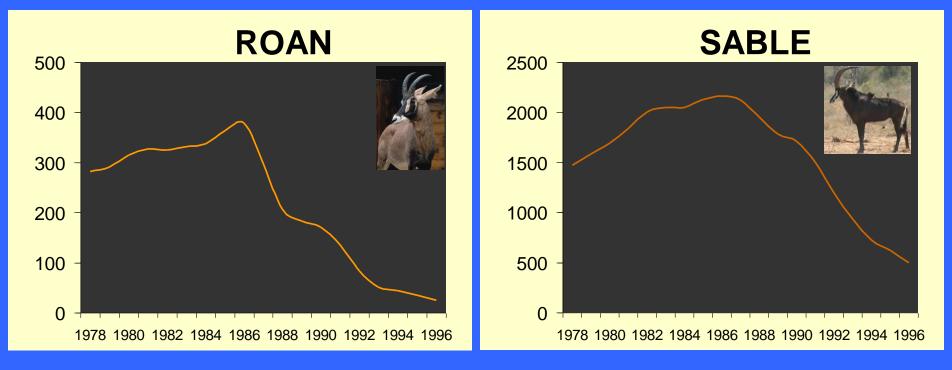


MODEL: Replication

Survival = f (Rainfall / Biomass)

MODEL: *Projection, whole park*

DECLINING POPULATIONS Rarer antelope in Kruger


DATA

Monitoring for interpreting natural changes

- → Annual aerial surveys 1977-1996
 - Total counts of all large herbivores
- Sex and age structure of samples
- Daily rainfall records

DECLINING POPULATIONS Rarer antelope in Kruger INFORMATION Annual reports → Population trends → TPCs surpassed

DIAGNOSIS

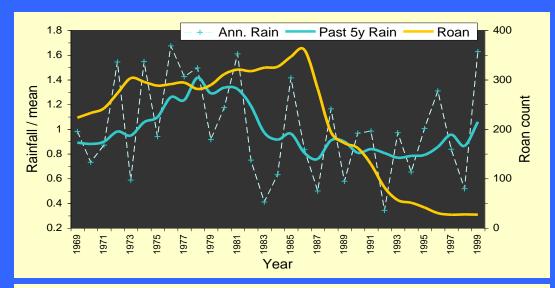
Poaching Disease Drought Habitat change Competition **Predation Mis-management**

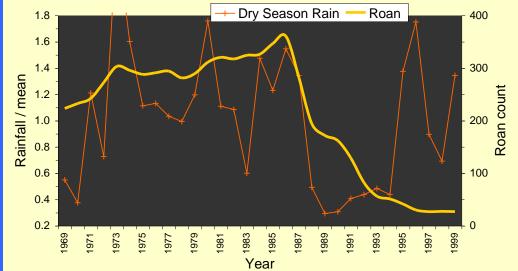
MANAGEMENT OPTIONS

If merely drought, don't intervene

MANAGEMENT OPTIONS

If merely drought, don't intervene If *climate shift*, mitigate


MANAGEMENT OPTIONS


If merely drought, don't intervene If climatic shift, mitigate If *mis-management*, rectify

RAINFALL TRENDS

Annual

Dry season

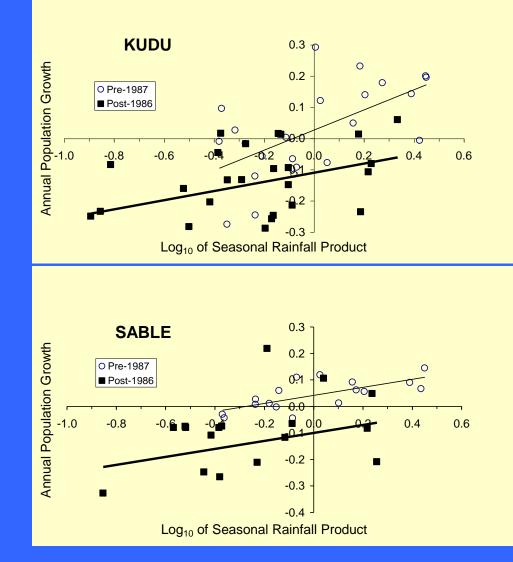
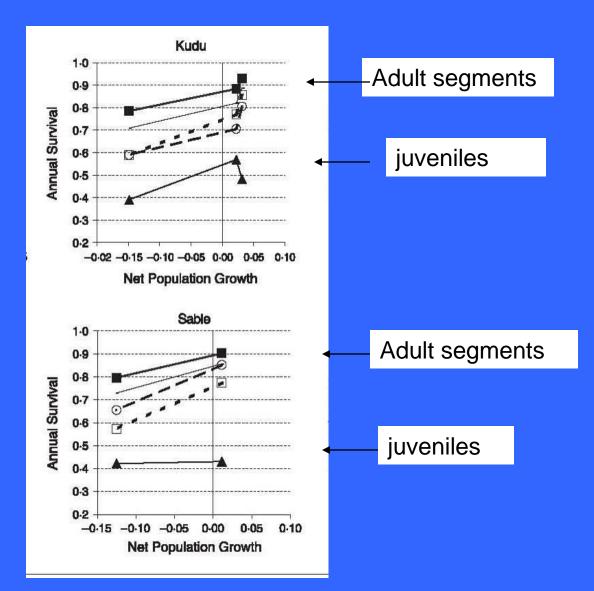

INFERENCE FROM REGRESSION RELATIONSHIPS

Table 1 Regression statistics												
Species	N	Regression statistics										
		Relative a	oundance	Wet season	rainfall	Dry season r	Dry season rainfall					
		Slope	Р	Slope	Р	Slope	Р					
a) <i>Stabilizing</i>												
Zebra	67	-0.048	0.020	0.070	0.031	0.054	0.020					
Wildebeest	67	(0.002)	-	(-0.007)	-	0.171	0.0003					
Impala	67	-0.087	0.019	0.169	0.034	0.044	0.397					
Giraffe	49	-0.031	0.131	0.046	0.338	(-0.006)	-					
b) <i>Declining</i>												
Kudu	67	-0.058	0.090	0.163	0.029	0.198	0.0005					
Waterbuck	35	-0.174	0.045	0.283	0.022	0.287	0.001					
Warthog	49	-0.033	0.342	0.423	0.002	0.281	0.002					
Sable	35	-0.021	0.405	0.045	0.666	0.173	0.020					
Eland	19	-0.302	0.010	(-0.143)	-	0.173	0.026					
Tsessebe	18	(0.161)	-	0.023	0.135	0.019	0.096					
Roan	18	(+)	-	0.043	0.813	0.047	0.719					

INFERENCE FROM KUDU MODEL

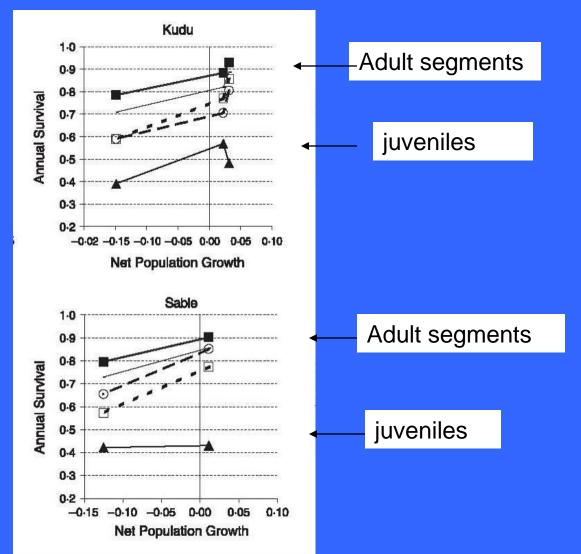
Not merely low rainfall


Regime shift after 1986

INFERENCE FROM DEMOGRAPHY

Altered trend was associated with reduced adult survival in all

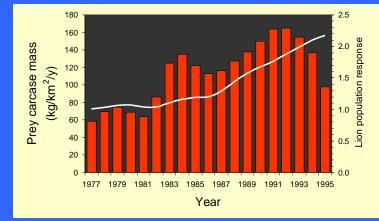
cases



INFERENCE FROM DEMOGRAPHY

Altered trend was associated with reduced adult Survival

Predation?


INCORPORATE PROXY MEASURES INTO MODEL

PREDATION:

Food availability as indexed by prey carcasses produced annually

HABITAT CHANGE:

Indexed by prior rainfall conditions

MODEL COMPARISON

Model selection statistics

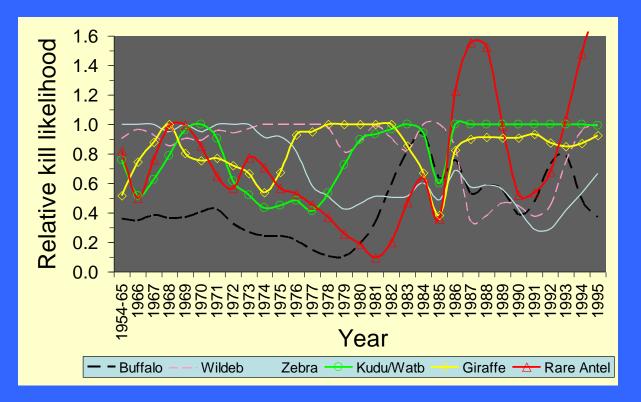
supported by relative Akaike distances and corresponding relative likelihoods

Species	Current Abundance + Rainfall only		Prior Rai	infall	Past Predator Food	
	⊿AICc	Relative likelihood	⊿AICc	Relative likelihood	⊿AICc	Relative likelihood
Kudu	8.8	0.012	6.7	0.035	0	1.000
Waterbuck	1.1	0.568	0.1	0.932	0	1.000
Warthog	0	1.000	<u>1.5</u>	<u>0.461</u>	<u>2.1</u>	<u>0.353</u>
Sable	11.7	0.003	1.21	0.546	0	1.000
Tsessebe	<u>4.1</u>	<u>0.129</u>	0	1.000	0.5	0.787
Roan	8.8	0.012	1.0	0.607	0	1.000

WHAT CAUSED INCREASED PREY AVAILABILITY?

MANAGEMENT INTERVENTIONS:
More waterpoints → more zebra
Culling suspended → more buffalo
→ more widespread lions
→ elevated risk of predation
→ accentuated drought impact

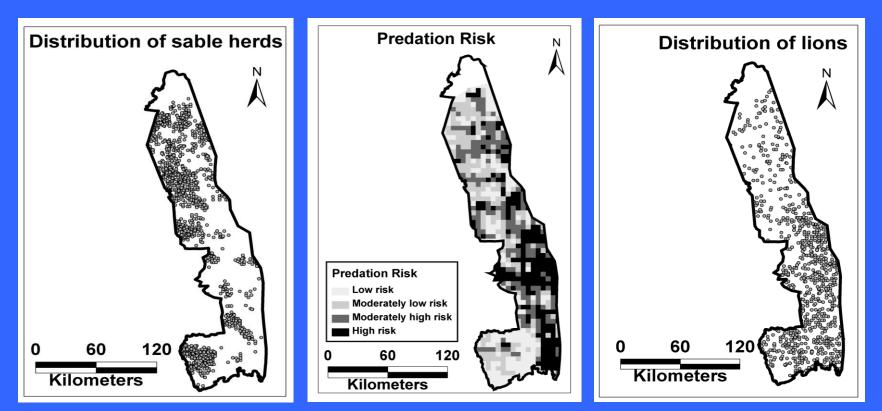
SHIFTING PREY SELECTION


DATA

49,453 found carcass records spanning 1954-1995 94% ascribed to predator kills Lions were responsible for 55%

SHIFTING PREY SELECTION

INFORMATION


Increased selection for alternative prey species was synchronous with the population declines

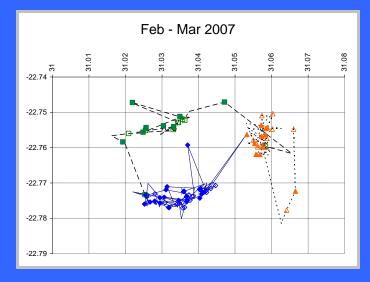
SHIFTING PREY SELECTION

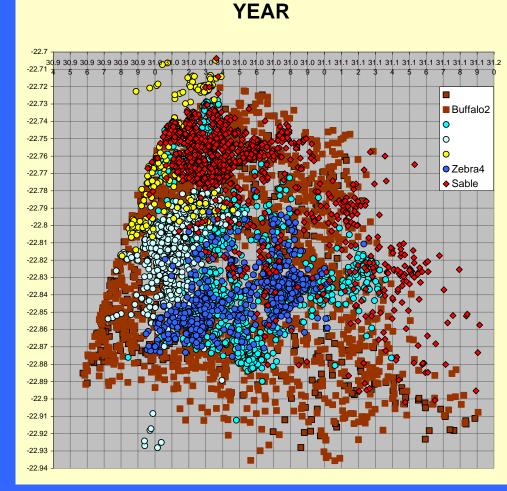
MODEL

Rare antelope species occupied spatial refuges of lower predation risk in north & west of Kruger Park

MOVEMENT STUDIES Comparative space use patterns

DATA: GPS-GSM collars on 8 sable herds 10 zebra herds 8 wildebeest herds 4 buffalo herds 3 lion prides


Hourly locations \rightarrow >100,000 records annually



MOVEMENT STUDIES Comparative space use patterns

Broad scale overlap

Fine scale distinctions

- SANParks gathered a voluminous data set
 - Total area counts covering 15+ species over 20 years
 - Demographic structure over 12 years Carcass records spanning 40+ years Daily rainfall records from 35 stations

INFORMATION EXTRACTED Descriptive population trends only

Neither assessed statistically, nor modelled

Jack of capacity

STATISTICAL ASSESSMENT

Enabled through my collaboration with postdoctoral statistical ecologist

(Dr Joseph Ogutu)

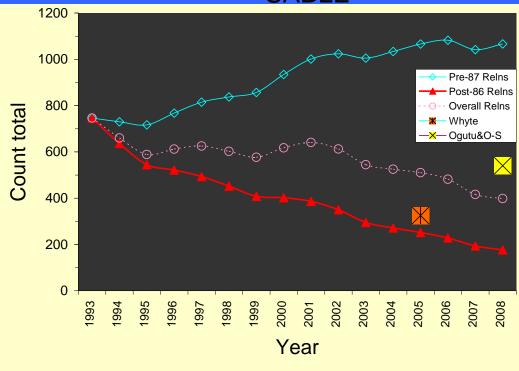
Model selection statistics using information theory

INTERPRETIVE MODELLING

Not rainfall alone Additional effect of shifting predation

Habitat change?

Scenario modelling could have avoided adverse waterpoint consequences


Have now established what caused population declines of the rarer antelope species – 15+ years after the problem arose!

But only 85% confident Cannot exclude *habitat deterioration* because data on *vegetation composition* change are lacking

Populations of the rarer antelope species have not solvered SABLE

Model projections:

May be too late to intervene – herd sizes are very small

- **SANParks** lacks
 - Human capacity to apply the full informatics hierarchy
 - Financial capacity to maintain the monitoring effort

Inadequate data to interpret recent population trends

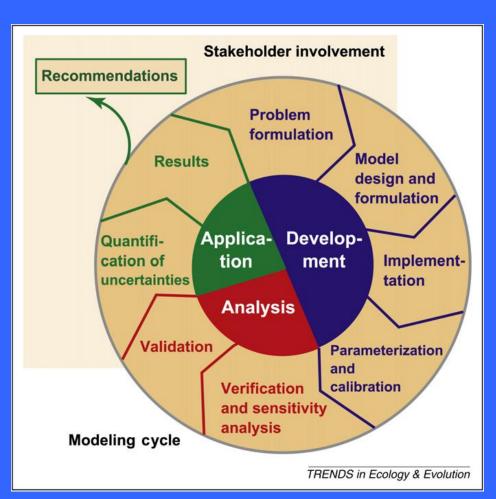
MICROCOSM OF SAEON'S CHALLENGE

CENTRAL ISSUE

How to reliably distinguish *human influences* from *climatic causes*

But inter-twined

Human transformation of landscapes and ecosystems is disrupting the capacity of the biota to cope with climatic variation

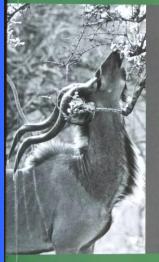

Ecological models supporting environmental decision making: a strategy for the future

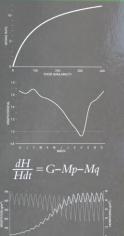
Amelie Schmolke, Pernille Thorbek, Donald L. DeAngelis and Volker Grimm

UFZ, Helmholtz Centre for Environmental Research – UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany Syngenta, Environmental Safety, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK USGS/Biological Resources Division and Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA

Trends in Ecology & Evolution 25:479-486, 2010

Transparent & Comprehensive Ecological Modelling Documentation (TRACE)




MY CONTRIBUTION

STUDENT EDITION

Adaptive Herbivore Ecology

From Resources to Populations in Variable Environment

Norman Owen-Smith

Introduction to Modeling in Wildlife and Resource Management

Norman Owen-Smith

b Blackwell Publishing

DYNAMICS OF LARGE HERBIVORE POPULATIONS IN CHANGING ENVIRONMENTS

Toward Appropriate Models

Edited by Norman Owen-Smith

WILEY-BLACKWELL

WHEN OUR EARTH SUPPORT SYSTEMS ARE CRUMBLING?

WHAT'S NEEDED IS A SAEON SUPPORT FACILITY

Environmental Informatics Institute (or Centre of Excellence, or Unit) Concentrating & fostering scarce skills needed to interpret voluminous data Bio-informatics Eco-informatics

Trans-disciplinary, supporting graduate courses in data management statis theoretical modeling decis

statistical interpretation decision support systems