Impacts of spekboom thicket degradation & restoration on hillslope hydrology

Gerson van Luijk; Richard M Cowling; Michel Riksen; Bart van Enk; Julia Glenday

Thicket Forum 2012

Background

- Semi-arid, water-stressed catchments
- Large potential thicket restoration areas
- Uncertain net hydrologic impacts
 - Watershed services from restoration?

Background

- Processes impacted
 - Canopy interception
 - Evaporation
 - Soil surface rainfall intensity
 - Infiltration into soil
 - Soil stabilization
 - Plant water use
 (evapotranspiration)
 - Shading evap. from soil

Background

- Processes impacted
 - Canopy interception
 - Evaporation
 - Soil surface rainfall intensity
 - Infiltration into soil
 - Plant water use (evapotranspiration)
 - Shading evap. from soil
 - Soil stabilization

- Net effects at catchment scale?
 - Storm event river flows, flooding
 - o Baseflow
 - Total runoff (water yield)
 - Topsoil cover
 - Sediment export

Hypotheses & Questions

- *Restoring* spekboom thicket cover will:
 - Increase canopy interception
 - Increase soil infiltration
 - Decrease storm event surface runoff
 - Decrease hillslope erosion

→Increase hillslope soil moisture retention

How much?

Methodology

- Fenceline contrast site, Baviaanskloof
 - North facing slope, 15°
 - Highly variable and episodic rainfall (300 mm MAP)
 - Sandy-loam ,rocky soil, 1m thick, TMG sandstone
 - Currently grazed vs. grazing ceased 30 years ago
 - Patchy grass, scattered trees vs. partial spekboom canopy
 - No litter layer, soil crusting vs. >5cm litter under spekboom

Methodology

Canopy Interception = Gross Rainfall – (Through-fall + Stemflow)

- Rainfall
 - Tipping bucket rainfall gages
- Through-fall
 - Tipping buckets under canopy
 - Through-fall troughs

Stemflow

• Stemflow collar

Methodology

- Soil infiltration
 - Mini-disk infiltrometer
- Soil moisture
 - Soil moisture probes
- Surface runoff
 - Gerlach troughs (catchment trough + collection barrel)
- Sediment transport
 - Gerlach troughs

Results

Canopy Interception

- Average: 40% of rainfall
- Range :
 - Small events (<5mm): 55 ± 11%
 - Intense events (>5mm): 23 ± 11%

• Effective rainfall intensity

- *Max in open:* 45 mm/hr
- Max under canopy: 18 mm/hr
- N.B.: Measured under spekboom canopy indicates interception under 100% canopy cover!

Figure 1. Van Luijk et al. in press (Journal of Arid Environments)

Results

• Soil maximum infiltration rate

- Degraded:
 0.04 0.25 mm/h
- Canopy:
 26.1 28.7 mm/h
- Soil moisture patterns
 - Degraded: lower max, fast dry post event
 - *Canopy:* higher max, SM persist post rainfall

Figure 3. Van Luijk et al. in press (Journal of Arid Environments)

Results

• Event runoff

- 67% more caught on degraded side on average
- Differences vary with intensity

• Erosion & sediment transport

- 100% more caught on degraded side on average
- Differences vary with intensity

Trough sediment totals by event

Results summary

Restoring spekboom canopy at this site:

 canopy interception (6-8x)
 maximum soil infiltration *rate* (150-650x)
 time and depth averaged soil moisture
 surface runoff (1.5x)
 hillslope sediment loss (2x)

Parameter	Spekboom	Degraded	Difference
Gross Rainfall	100 %	100 %	0 %
Interception	33 %	5 %	+ 28 %
Effective Rainfall	67 %	95 %	- 28 %
Runoff	7 %	39 %	- 32 %
Infiltration	60 %	56 %	+4%
Van Luijk 2011			

So what? Implications

- Demonstrates some clear, local, hydro-linked benefits of restoring spekboom thicket canopy cover
- Loss of top soil & moisture retention
 - Ongoing process
 - Lowering hillslope productivity
 - Challenges/considerations for restoration
- Flood event runoff intensity
 - Increase gully & river channel erosion/incision
 - Groundwater drainage
 - Increase flood impacts (ecosystems, communities, infrastructure)

Next speks...er, steps

- Other sites, conditions?
- Evapotranspiration?
- Catchment scale impacts
 - Baseflow?
 - Sedimentation?
 - Total downstream water yield?
- Climate change

Catchment scale modeling + monitoring

- Incorporate these findings in model
 - Need: mapped % canopy cover!
- o Monitor streamflow
- Monitor stream sediment transport
- Calibrate & validate modeling of processes
- Land cover scenarios
- Climate change scenarios

Thanks!

The many hands of PRESENCE!