Resilience Thinking and the Management of Thicket

Christo Fabricius

from Ostrom 2009. Science 235: 420

Exogenous drivers affecting natural and human-made infrastructure, e.g. *inputs from related ecosystems* in the SES framework.

The capacity to bounce back

The ability to absorb disturbances

To be changed and then to re-organise and still retain the same basic structure and ways of functioning As resilience declines the magnitude of a shock from which it cannot recover gets smaller and smaller.

The shape and size of the basin can change

- thresholds move, and so resilience changes

How resilient is Thicket?

When viewed at one scale..

- Ancient origins 65-45 Million years (Paleogene)
- Began as forests, invasions by other growth forms
- Persistence through wet, dry and glacial periods of the Miocine 1.8 M.a.
- Biomass similar to forests
 - 50-100 x that of Nama-Karoo
- "a unique admixture of lineages spanning an enormous range of ages"
 "the mother of southern African vegetation"

Cowling et al. 2005. S.A. J. Bot. 71: 1-23

 Resilience = "To be changed and then to re-organise and still retain the same basic structure and ways of functioning"

But when viewed at another...

Thicket: the brittle biome

Slow variables rule

- Slow-growing species = "plodders"
- Ancient life forms

A retirement village

Few seedlingsVegetative re-growth

Sluggish metabolism

- 4.5 tonnes of litter / ha
 - 35x that of arid savannas
- 70-87 tonnes / ha of stored Carbon

Fragile foundations

Clay content ~15%

Resilience, *per se*, is neither 'good' nor 'bad'

Undesirable states of systems can be very resilient (dictatorships, saline landscapes)

A system state that once was desirable can become 'undesirable' through changes in external conditions (context)

Something which is resilient at one scale may be 'brittle' at another

Systems may 'flip'

Alternate stable states are possible

when a **threshold** level of a controlling variable in a system is passed.

The nature and extent of **feedbacks**

change,

resulting in a change of direction (the **trajectory**) of the system itself.

A 'regime shift' takes place

Scheffer & Carpenter 2003. Trends in Ecology & Evolution 18 (12), 648-656.

Images excerpted from Lechmere-Oertel, Kerley & Cowling 2005. J Arid Env 62: 459-474

Fabricius Burger & Hockey 2003. J. Appl. Ecol. 40: 392-403

Fabricius Burger & Hockey 2003. J. Appl. Ecol. 40: 392-403

A functioning Spekboom matrix - Patches of Spekboom & diverse shrubs Heavy browsing by domestic herbivores Loss of stability. Patches contract. Bare ground increases. Hostile soil conditions Litter, soil C↓ Mycorrhizae↓ Build-up of K, Na Soil temp. ↑ Soil moisture↓ New 'stable' regime Canopy trees replace Spekboom Karroid shrubs, weedy ephemerals

System 'memory': the lag effect

- moving back along a *different* trajectory

Spekboom patch size Conditions

The return path is not the same as the causal path

Hysteresis:

retention & memory of a past state

Return to a desired state is only possible if conditions are reversed far enough (F1)

Transformation

• Transformability: *"The capacity to create a fundamentally new system when ecological, economic, or social (including political) conditions make the existing system untenable"*

Walker, B., C. S. Holling, S. R. Carpenter, and A. Kinzig. 2004. Resilience, adaptability and transformability in social–ecological systems. *Ecology and Society* 9(2): 5.

Transformability

- preparedness to change
 - getting beyond the state of denial
- options for change
 - new 'trajectories' emerge from support for experiments, novelty, continual learning
- capacity to change
 - levels of capitals (including 'social capital'), higher-scale support - governance

Capacity to make use of 'windows of opportunity'

Folke et al. 2009 In: Principles of Ecosystem Stewardship: Springer

Managing for resilience (1)

Use a social-ecological lens Focus on the interplay between governance, resource users, resource systems and public infrastructure Manage all of them

Understand feedbacks across scales – Focal scale: vegetation patches Scale above: regional land use patterns, policy changes. Scale below: changes in soil properties,

cognitive processes and mental models of users and decision makers

Managing for resilience (2)

Manage slow-onset changes Understand the thresholds Monitor the control variables

Be prepared to overcome the lag effect Reversal must be far enough to overcome the system's 'memory'

Time

Funding

Managing for resilience (3)

Manage connectivity Patch:gap ratio Continuity of functional landscapes Knowledge exchange, social learning

Foster learning and reflection Communities of practice Adaptive management

Resilience resources:

-information and news

- workbooks (free, downloadable)

-Ecology and Society

-www.ecologyandsociety.org

-Twitter:

@resilienceSci

Resilience Alliance

How can landscapes and communities Adapt and transform in a changing world?

Island Press

http://islandpress.org/ip/books/book /islandpress/R/bo8070201.html