Radiative forcing trade-offs in the thicket: carbon sequestration versus albedo

Kathleen G. Smart

Animal Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg

R. J. Scholes

Natural Resources and Environment, CSIR, Pretoria

10th Annual Thicket Forum 03 September 2013

The earth has an albedo of 0.3

30% of the incident solar radiation is reflected into space

70% is absorbed by the Earth and reradiated as longwave infrared radiation

The earth has an albedo of 0.3

30% of the incident solar radiation is reflected into space

70% is absorbed by the Earth and reradiated as longwave infrared radiation

Thermal equilibrium

The earth has an albedo of 0.3

30% of the incident solar radiation is reflected into space

70% is absorbed by the Earth and reradiated as longwave infrared

Thermal equilibrium

reflection coefficient:

Albedo?

reflected radiation incident radiation

reflection coefficient:

reflected radiation incident radiation

Latitudinal variation

The long-term annual global average is around 342 W m⁻²

Hatzianastassiou,2004

reflection coefficient:

reflected radiation incident radiation

Hatzianastassiou,2004

Albedo

1

Portulacaria afra 'spekboom' or pork bush

Latent heat/ Evaporation

R_{net}

Latent heat/ Evaporation

R

net

Latent heat/ Evaporation Sensible heat R

net

R_{net}

Latent heat/ Evaporation Sensible heat Latent heat/ Evaporation Sensible heat R

net

R_{net}

Latent heat/ Evaporation Sensible heat

> Wasted runoff

Image courtesy of Google Eart

Latent heat/ Evaporation Sensible heat

R_{net}

Latent heat/ Evaporation Sensible heat

R

net

Image courtesy of Google Eart

Measuring albedo

- The first satellites started measuring reflected solar radiation in the late 1970's
 - Reflected solar radiation is one of the more challenging measurements to make
 - The main reason for this is reflected solar radiation takes place over all angles

Hatzianastassiou,200

Measuring albedo

- Reflected solar radiation is one of the major elements in the earth's radiation budget
 - If the global albedo reduced by 1% this would produce an increase in radiative forcing (prior to any feedbacks) of 3.4W m⁻²
 - This is a similar magnitude to the calculated effects from GHG

Hatzianastassiou,200

www-misr.jpl.nasa.gov, image courtesy of S. Suzuki and E. M. De Jong

our future through science

www-misr.jpl.nasa.gov, image courtesy of S. Suzuki and E. M. De Jong

- Sensitivity to vegetation structure, owing to effects of shadowing
- Ability to distinguish canopy and understory reflectance due to contrast differences between nadir and oblique views
- Accuracy improvements in vegetation community and land cover classifications

My approach Site selection

Image courtesy of Google Earth

My approach Site selection

Images courtesy of Google Earth

My approach Site selection

Images courtesy of Google Earth

Data Sto, NOAA, U.S. NEW, NGA, GEBCO @ 2013 Geogle US Dept of State Geographer @ 2009 GeoBasts-DE/EKG

-

and the second Mar Marine

1 1 1 1 1 1 1 1 1

in the second

10 - M T 10 T 10 T 101 and the state is the state of t and the second state of th The second and the state of t and the state is not a set of the state of the Same water a state of the state

The first the rate of the local state of the Reg Reg Ages a spirit die View and a Second

and a set of the little set of

ann ann a de la Christian ann an

町1日2名(図)曲

and a state of state of

COLUMN TWO IS NOT

Tel State

Carl Land Sale

Goog

our future through science

Single MISR path

A B

Ē

8

Grahamstown, South Africa

Path 176

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2013 Google US Dept of State Geographer © 2009 GeoBasts-DE/EKG

in the set of

Cape

Image courtesy of Google Earth

Goog

Path

164

MISR paths 169-172

Image courtesy of Google Earth

MISR paths 169-172

∧wa∠ulu-inatai

A return time approximately 16 days per path per month

For 4 paths approximately 8 images per month

What does the data look like? FAPAR path 170, block 117

12 August 2000

What does the data look like? FAPAR path 170, block 117

12 August 2000

The current algorithms which produce the MISR-HR products produce 'No Data' when any one of the nine cameras has insufficiently accurate or no data

Vegetation albedo

Intact 12 year mean TOC albedo

Degraded 12 year mean TOC albedo

There is a difference in the albedo of transformed and intact vegetation

What does this mean?

- Average 27 year rate K27 block at Krompoort
- $0.42 \pm 0.08 \text{ kgC m}^{-2} \text{ yr}^{-1}$

- Mean of the mean albedo for each site
- Calculate the difference between the degraded and intact sites
- Use the average incoming solar radiation for Addo, Baviaanskloof, Bucklands, East London, Jansenville, Middleton and Patensie

- Average 27 year rate K27 block at Krompoort
- 0.42 \pm 0.08 kgC m⁻² yr⁻¹
- -436 GJ ha⁻¹ yr⁻¹ radiative forcing

- Mean of the mean albedo for each site
- Calculate the difference between the degraded and intact sites
- Use the average incoming solar radiation for Addo, Baviaanskloof, Bucklands, East London, Jansenville, Middleton and Patensie
- + 426 GJ ha⁻¹ yr⁻¹

- Average 27 year rate K27 block at Krompoort
- 0.42 \pm 0.08 kgC m⁻² yr⁻¹
- -436 GJ ha⁻¹ yr⁻¹ radiative forcing Cooling effect

- Mean of the mean albedo for each site
- Calculate the difference between the degraded and intact sites
- Use the average incoming solar radiation for Addo, Baviaanskloof, Bucklands, East London, Jansenville, Middleton and Patensie
- + 426 GJ ha⁻¹ yr⁻¹ radiative forcing Warming effect

- Depending on colour and brightness, a land surface can have a positive (cooling) or negative (warming) effect on climate
- There is a real difference between the intact and transformed thicket landscapes
- This difference is important for heat and moisture budgets

Does this mean we stop restoration?

• No.

• Why not?

Let's look at another service, besides carbon squestration

What does this mean?

Idealised sketch of land-atmosphere interactions. The signs indicate the effect of the outgoing box on the ingoing box.

Both radiative and hydrological feedbacks are + -> they amplify change

What does this mean?

Idealised sketch of land-atmosphere interactions. The signs indicate the effect of the outgoing box on the ingoing box.

The radiative feedbacks are + -> they amplify change

The hydrological feedbacks are - -> they dampen change

Ecosystem services

BIODIVERSITY

Restoring to an intact biodiversity-rich state will change the flow of services

- Carbon sequestration
- •Other provisioning services

Ecosystem services

BIODIVERSITY

Restoring to an intact biodiversity-rich state will change the flow of services

- Carbon sequestration
- •Other provisioning services

Ecosystem services

BIODIVERSITY

Restoring to an intact biodiversity-rich state will change the flow of services

- Carbon sequestration
- •Other provisioning services

Compare these services in two contrasting landcover states

Statistical analysis of river flow characteristics

- Flow Duration Curves to examine low flows
- Extreme Value Theory on peak flows
- Cumulative plots of discharge and rainfall

Intact thickets provide:

- Attenuation of flood peaks
- Decreased variability in low flows
- Decreased probability of low flow cessation

Concluding thoughts

- The same order of magnitude as the forcing exerted by a decrease in albedo associated with the successful reestablishment of spekboom
- Restoration would exert a positive radiative forcing through reduced albedo which could equal the negative forcing expected through carbon sequestration
- The albedo effect is large enough to warrant inclusion in assessments of the climate regulation potential of thicket restoration projects.

Acknowledgements and thanks go to

For project funding

For weather datasets

Michel Verstraete (*United Nations Joint Research Council, Ispra, Italy*) for theoretical and technical help

Linda Hunt (NASA Langley Research Centre (LaRC)) for her programming expertise

Flow Duration Curves (1981-2011)

Extreme value analysis, return level plot (1981-2011)

Cumulative plots(1981-2011)

Cumulative plots(1981-2011)

Cumulative plots(1981-2011)

accumulated rainfall (mm)

Cumulative plots(1981-2011)

