

Gamtoos Irrigation Board Gamtoos-Besproeiingsraad Portulacaria afra (L.)Jacq. growth and survivorship in response to watering supply and soil type

> Ashleigh Connor Honours Project 2011

Supervisor: Brad Ripley Co- Supervisor: Mike Powell

environment & tourism

Department: Environmental Affairs and Tourism REPUBLIC OF SOUTH AFRICA

http://www.miller-mccune.com/uncategorized/commander-carbon-alter-ego-spekboom-3745/

Rhodes Restoration Research Group

Portulacaria afra - Spekboom

- Small leaf, succulent plant species
- Facultative CAM photosynthesis
- Acquired the name "Super plant"
- Ecosystem engineer

- Widely distributed in Thicket Biome of Western and South Eastern Cape
- Characteristic species of Spekboom Succulent Thicket.

15% Intact: dense closed succulents canopies

85 % degraded: pseudo-savannas & soil erosion

Fence-line

Restoration via spekboom

Spekboom's ability to:

- Sprout from replanted cuttings
- Possession of good ground cover
- Soil binding properties

= Good Candidate

Eastern Cape= semi- arid+ has different soil types

Influences establishment, survival & growth
Less than 1/2 cuttings survive during initial 2 years of establishment

Solution to this problem?

 Determine and implement a successful watering regime during initial establishment to:

• 1 establishment, survivorship & growth

 Most spekboom farmers practice these methods BUT Key questions remain unanswered:

- Does soil water supply & soil type affect survivorship and growth of spekboom?
- What is the optimal watering regime required to achieve successful results?

Aims of the study

AIM 1:

 To determine whether growth & survival is affected by moisture availability

AIM 2:

To determine whether moisture availability is affected by:

- frequency and magnitude of watering
- & by soil type

AIM 3:

• To determine a successful watering regime to improve growth & survivorship of spekboom

Methods

- X 50 non-rooted cuttings planted
- X 2 soil types used
- X 5 treatments conducted/soil:
 - < 8% SWC (no watering)</p>
 - 8-10% SWC
 - 10-15% SWC
 - 15-20% SWC
 - > 20% SWC (regular watering)
- SWC measured every 4 to 7 days and plants watered, if necessary.

Prior to harvest

Establishment measured:

 Absence/presence of roots recorded after two weeks of planting

Survival measured:

No. dead leaves, leaf area
& leaf weight

Shoot water potential measured:

 with a Shönland pressure chamber

Post Harvest

- Growth measured:
- Dry biomass for:
- Roots

• Stem/truncheon

Leaves

- Branches
 - Whole plant
- Data Analysis:

Soil type*SWC

SWC Soil type

- Factorial ANOVA used to determine:
 - What & how variables affected survival & growth

Post-hoc analysis (Fisher LSD) used to identify:

• Where significance differences occurs within data

Res	Survival Growth				
Survival & Growth Parameters	Soil Water Content (SWC)	Soil Type	Survival & Growth Parameters	Soil Water Content (SWC)	Soil Type
Leaf area (cm ²)	F _{4,40} = 16.63, p< 0.000*	F _{1,40} = 22.16, p< 0.000*	Total biomass (g)	F _{4, 40} =5.97, p< 0.001*	n.s.
Average weight of 10 leaves (g)	F _{4,40} = 68.37, p< 0.000*	F _{1,40} = 4.70, p< 0.036*	Leaf biomass (g)	F _{4, 40} =5.81, p< 0.001*	n.s.
Number of dead leaves	F _{4,40} = 3.08, p< 0.017*	n.s.	Average growth of plants (g)	F _{4, 40} = 28.32 ,p< 0.00*	n.s.
Below ground biomass (g)	F _{4, 40} =13.08, p< 0.000*	n.s.	Above ground biomass (g)	n.s.	n.s.

Est. & Survival Results

- 90% of cuttings established after 2 weeks
- Leaf area (cm²) as SWC
- Leaf area of Soil 2 > Soil 1
- Average weight of leaves as SWC
- Average weight of leaves of Soil 2 > Soil 1.
- No. of dead leaves + as SWC .
- No. of dead leaves of Soil 2 similar to Soil 1.

	SWC (%)	Volume of water (litres)/ 7- litre pot		Volume of water (litres)/ m ² soil surface area	
Waterin	g	Soil	Soil	Soil	Soil
regime		Type 1	Type 2	Type 1	Type 2
results					
	0	0.00	0.00	0.00	0.00
	5	0.30	0.25	1.20	1.00
	10	0.60	0.50	2.50	2.00
	15	0.90	0.75	3.70	3.00
	20	1.20	1.00	5.00	4.00

Conclusion

 Moisture availability DOES have an effect on growth of cuttings. Unable to fully assess effect on survival.

 Moisture availability IS affected by frequency & magnitude of watering regimes, not so much soil type.

15% SWC is the minimal watering point that could allow est. and growth of spekboom.
Below 15%= reduced growth = plants "stressed".

Watering regime: frequently irrigating spekboom every 4-7 days with >15% SWC (3- 4litres) promotes establishment, survival & growth.

Acknowledgements

- I would like to thank the following people for their guidance and contribution towards my project:
- Brad Ripley, Mike Powell, Nick Venter, Nick Riddin, Götz Neef, Chantal Taylor.
- And I would also like to say a big thank you to the following organisations for funding to do the research:
- Rhodes Restoration Research Group
- Gamtoos Irrigation Board
- Department of Environmental Affairs, Natural Resource Management Programme

Discussion

Growth highly affected by SWC, not so much soil type.
 Possibly due to moisture availability effect:

- Less negative SWP, more moisture available
- More negative SWP, less moisture available

 Or fact that when water limiting: CAM photosynthesis kicks in =growth rate reduced:

- Drought-induce hydraulic failure (cavitation/embolism)
- Carbon- starvation (Stomatal closure & depletion of carbohydrates)

 Physiological changes under diff watering regimes still needs to be assessed.

References

- Guralnick, L.J. & Ting, I.P. 1986. Seasonal response to drought and rewatering in *Portulacaria afra* (L.) Jacq. *Oecologia (Berlin)* 70: 85-91.
- Guralnick, L.J. & Ting, I.P. 1987. Physiological Changes in *Portulacaria afra* (L.) Jacq. during a Summer Drought and Rewatering. *Plant Physiology* 85: 481- 486.
- Mills, A., Cowling, R., Powell, M., Sigwela, A. 2000. Restoration of degraded thicket in the Eastern Cape: capturing carbon, enhancing biodiversity & providing employment. *R3G: Restoration Research Group Report. Pp. 1.*
- Lombardini, L. 2006. Ecophysiology of plants in dry environments. In: P.D'Odorico & A. Porporato (Ed.s). *Dryland Ecohydrology*. Pp. 47- 65. Springer.
- Sperry, J.S. & Hacke, U.G. 2002. Desert shrub water relations with respect to soil characteristics and plant functional type. *Functional Ecology* 16: 367- 378.
- Boyer, 1995. Chapter 3: Thermocouple psychrometery. In Redd, E.B. & Blue, R.F. (Ed.s), *Measuring water potentials.* KWG, Oxford.
- McDowell, N., Pockman, W.T., Allen, C. D., Breshears, D. D., Cobb. N., Kolb. T., PLaut, J., Sperry. J., West. A., Williams, D. G. and Yepez. E. A. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? *New Phytoglogist*, 178: 719-739.
- Mills, A.J. and Cowling, R. M. 2006. Rate of Carbon Sequestration at Two Thicket Restoration Sites in the Eastern Cape, South Africa. *Restoration Ecology* 14 : 38-39.
- Oakes, A. J. Portulacaria afra Jacq. A Potential Browse Plant. Economic Botany 27: 413- 416.
- Powell, M. J. 2009. Restoration of degraded subtropical thickets in the Baviaanskloof Megareserve, South Africa. RU Thesis.

